SYLLABUS
Paleoclimatology and Paleoceanography
Spring 2009

Prof. Jean Lynch-Stieglitz
Email: jean@eas.gatech.edu
Phone: 404-894-3944
Office Hours: by appointment 1236 ES&T

Prof. Kim Cobb
Email: kcobb@eas.gatech.edu
Phone: 404-894-1992
Office Hours: by appointment 2234 ES&T

Jake Leech, TA
Email: leech@gatech.edu
Phone: 404-385-4400
Office Hours: by appointment 1108 ES&T

Website: http://shadow.eas.gatech.edu/~jean/paleo/

Audience: This course is intended for advanced undergraduate and graduate students who are interested in learning about the history of the earth’s climate, and how paleoclimate studies can help us learn more about the workings of the climate system and associated biogeochemical cycles. There are no specific prerequisites, but some coursework in earth sciences, oceanography, and/or geochemistry is helpful.

Format: Tuesday’s class period is devoted to an overview/background lecture on each weekly topic, and during Thursday’s class students will work with instructors on in-class problems related to Tuesday’s lecture material.

Problem sets:
Three problem sets will be assigned during the semester. Problem set must be submitted in Geophysical Research Letters journal article format (instructions provided).

Grading:
25% Recitation section participation & assignments
25% Problem sets
20% Midterm Exam
30% Final Exam

Schedule:

Week 1 (JLS):
Jan 6 Introduction and overview
Jan 8 Global Energy Balance and Faint Young Sun
 Reading: Ruddiman 1st Ed: Ch 2 (pp. 19-31) and 3 for reference
 Ruddiman 2nd Ed: Ch 2
Week 2 (KMC):
Jan 13 CO2-Weathering Climate regulation
Jan 15 Recitation: Energy Balance and Long term CO2
 Reading: Ruddiman 1st Ed: Ch 4 and 5 for reference
 Ruddiman 2nd Ed: Ch 3 and 4 for reference

Week 3 (KMC):
Jan 20 Greehouse Earth: Cretaceous Climate/ Late Paleocene Thermal Maximum
 Ruddiman 2nd Ed: Ch 5 for reference
Jan 22 Recitation: Problem Set 1 Work Session

Week 4 (JLS):
Jan 27 Cenozoic Cooling and Glaciation
Jan 29 Milankovitch and Monsoons
 Week 4 Reading: Ruddiman 1st Ed: Ch 7, 8
 Ruddiman 2nd Ed: Ch 6, 7

Week 5 (JLS): **Problem Set #1 due**
Feb 3 Milankovitch and Glaciation
Feb 5 Recitation: Milankovitch
 Week 5 Reading: Ruddiman 1st Ed Ch 9, 10
 Ruddiman 2nd Ed: Ch 8, 9

Week 6 (JLS):
Feb 10 Ice Core Records of Atmospheric Composition
Feb 12 **Midterm exam**

Week 7 (JLS):
Feb 17 Last Glacial Maximum: Ice Sheets, Sea Level, Dust, Dating
Feb 19 Recitation: Oxygen Isotopes in paleoclimate studies
 Week 7 Reading: Ruddiman 1st Ed: Ch 13
 Ruddiman 2nd Ed: Ch 12

Week 8 (JLS):
Feb 24 Last Glacial Maximum: Ocean Circulation
Feb 26 Recitation: Carbon Isotopes (13C, 14C) in paleoclimate studies
 Week 8 Reading:

Week 9 (KC):
Mar 3 Last Glacial Maximum: Temperature reconstructions
Mar 5 Recitation: Problem Set 2 Work Session
 Week 9 Reading: Ruddiman 1st edition Chapter 13
 Ruddiman 2nd Ed: Chapter 12

Week 10 (KC):
Mar 10 Last Glacial Maximum: CO₂
Mar 12 Recitation: Marine biogeochemical cycles
 Week 10 Reading: Ruddiman 1st Ed: Chapter 11
 Ruddiman 2nd Ed: Chapter 10

Week 11 (JLS): **Problem Set #2 due**
Mar 24 Rapid Climate Change – Records from Ice Cores and Land
Mar 26 Recitation: Oxygen isotopes and paleo-hydrology
 Week 11 Reading: Ruddiman 1st Ed: Chapter 15
 Ruddiman 2nd Ed: Ch 14

Week 12 (JLS):
Mar 31 Rapid Climate Change – Oceanic Records and Mechanisms
Apr 2 Recitation: Dating paleoclimatic archives

Week 13 (KC):
Apr 7 Holocene Climate
Apr 9 Recitation: Problem Set 3 Work Session
 Week 13 Reading: Ruddiman 2nd edition: pp 240-46

Week 14 (KC):
Apr 14 Climate change during the last millennium
Apr 16 Recitation: Multi-proxy reconstruction
 Week 14 Reading: Ruddiman 1st Ed: Chapter 15
 Ruddiman 2nd Ed: Chapter 16
Week 15 (KC): **Problem Set #3 due**
Apr 21 A paleoclimate perspective on global warming
 Reading: Intergovernmental Panel on Climate Change AR4, 2007, Executive Summary.
Apr 23 Final Exam Review- Bring questions

May 1, 11:30-2:30pm: **FINAL EXAM**